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To better understand the inner workings of information spreading, network researchers often use
simple models to capture the spreading dynamics. But most models only highlight the effect of
local interactions on the global spreading of a single information wave, and ignore the effects of
interactions between multiple waves. Here we take into account the effect of multiple interacting
waves by using an agent-based model in which the interaction between information waves is based
on their novelty. We analyzed the global effects of such interactions and found that information that
actually reaches nodes reaches them faster. This effect is caused by selection between information
waves: slow waves die out and only fast waves survive. As a result, and in contrast to models with
non-interacting information dynamics, the access to information decays with the distance from the
source. Moreover, when we analyzed the model on various synthetic and real spatial road networks,
we found that the decay rate also depends on the path redundancy and the effective dimension of
the system. In general, the decay of the information wave frequency as a function of distance from
the source follows a power law distribution with an exponent between -0.2 for a two-dimensional
system with high path redundancy and -0.5 for a tree-like system with no path redundancy. We
found that the real spatial networks provide an infrastructure for information spreading that lies in
between these two extremes. Finally, to better understand the mechanics behind the scaling results,

we provide analytical calculations of the scaling for a one-dimensional system.

I. INTRODUCTION

In today’s society, we are flooded with information.
Waves of new ideas, innovations, products, and trends
follow each other in quick succession. To better under-
stand the inner workings of the dynamics, researchers
often use simple models to capture important spreading
mechanisms [IH7] on a complex network [8HIG]. Broadly
speaking, there are two classes of such models: threshold
models [T7H21] and contagion models [22H25]. Threshold
models assume that individuals adopt new information
or technology if a certain proportion of their friends have
adopted it. This mechanism leads to cascades that, un-
der favorable conditions, can propagate throughout the
entire system. Contagion models assume that individuals
spread information or rumors much like they spread mi-
crobial infections, through interactions. This mechanism
can also cause spreading across the entire system, pro-
vided that the transmission rate is sufficiently high. Both
types of models highlight the effect of local interactions
on global spreading, but, in general, they ignore effects
of interactions between multiple information waves.

Ideas inherently depend on each other, and waves of
new information or technology often interact with one
another as they propagate through society. In some sys-
tems, information waves integrate or hybridize, while in
other systems they compete and replace one another.
Here we focus on the latter type of interaction, when
waves replace one another entirely, and analyze the global
effects of such interactions. For simplicity, we use novelty
as a proxy for quality and key trait in the competition be-
tween waves [26] 27]. Relevant systems include news me-
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dia reporting of a particular event, release of new software
versions, and invention of new technology that makes old
technologies obsolete. With interaction between multiple
waves, some waves will make it across the system and
others will not. Therefore, the wave frequency, or, equiv-
alently, the rate of adoption of individuals, will depend
on their position relative to the information source in
the system. For example, in ancient times, new methods
of metallurgy spread in multiple waves across Europe,
and, in modern times, new versions of operating systems
spread across the globe. Not everybody upgrades imme-
diately, and our aim in this paper is to analyze how the
access to new information depends on the position in a
system and the topology of the system.

To analyze the effects of interactions between multiple
waves, we use a simple agent-based model introduced in
ref. [28] and further analyzed in ref. [29]. In its simplest
formulation, a source agent injects multiple waves of new
information over time in a given network. At a given
rate, neighboring agents adopt the information if it is
newer than the information that they already have. We
provide analytical results of the wave frequency for a one-
dimensional model and use simulations on lattice models
between one and two dimensions, as well as on real spatial
networks. In this way, we can quantify the effects of inter-
actions between multiple waves and show, for example,
that not only the distance from the source, but also the
path redundancy, determine the rate of adoption. More-
over, compared to a system with non-interacting waves,
new information reaches agents faster, because of selec-
tion between waves: slow waves die out and fast waves
survive.

We begin by describing the model in detail and then
analyze the model in different spatial geometries. In turn,
we analyze the model from the perspective of the agents
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and the information waves, respectively.

II. METHODS

In this section, we first detail the model and then
describe the spatial embedding we use to analyze the
spreading dynamics.

A. Model definition

The model consists of a number of agents, each of
which occupies a node connected to neighboring nodes
in a spatial network. The core of the model describes in-
teractions between multiple information waves released
at a single source node. At each time ¢, the source node
in the center j = 0 generates a new piece of information
tagged by the time when it was generated ag(t) = t. In
the same time step, each node j with information of age
a;(t) asks each of its neighbors k; with probability S if
k; has newer information. If ay, (t) < a;(t), j adopts the
new information and sets a;(t) = ay, (t). Without loss of
generality and throughout our analysis, we use § = 0.5.
Note that this model formulation is equivalent to one
in which agents actively transmit information to each of
their neighbors with probability 8, and the neighbors up-
date their information if it is newer than the information
they already had. Therefore, if there was only one infor-
mation wave or if the waves did not interact, the model
would describe the standard SI dynamics of susceptible
and infected individuals [20, 30, B1], and an information
wave would always spread across the system. In the pres-
ence of multiple interacting waves, however, the informa-
tion waves will compete with each other as they spread
through the system, and only the fast ones will survive
and make it across the system.

FIG. 1. The spatial and temporal dynamics of the
spreading model with multiple interacting waves on
a two-dimensional lattice. (a) A snapshot of the dynamics
in which each color corresponds to a single information wave.
(b) The age landscape of the model in which bright colors
(light yellow) represent new information and dark colors (dark
red) represent old information.

Figure [I] illustrates the dynamics of the spreading

model on a two-dimensional lattice. This figure was pro-
duced from the Java applet available in ref. [32]. The
source of new information is in the center of the lattice.
Close to the information source, the diversity of informa-
tion waves and the competition between them are high.
Consequently, agents in this area become updated with
high frequency. But far from the source, the wave fre-
quency is lower, because high competition close to the
source eliminates some waves. Therefore, nodes in dis-
tant areas must wait longer between each update of in-
formation. For example, for a line source that is located
at one edge of a lattice, the density of wave fronts de-
cays as the square root of distance from the source [28§].
In this paper, we analytically derive this result for a
one-dimensional system and further show that the infor-
mation wave frequency also depends on the path redun-
dancy, the number of shortest paths between the source
and a given node. The path redundancy can be thought
of as the effective dimensionality of the system. Higher
path redundancy in a system gives nodes better access
to new information.

B. Spatial embedding

To analyze the effects of path redundancy, we build
synthetic spatial networks with varying degree of path
redundancy. The networks range from trees to two-
dimensional lattices (Fig.[2). In the two-dimensional lat-
tice, the number of shortest paths grows exponentially as
a function of distance from the source. We construct the
networks in two steps:

(i) We start with a two-dimensional structure with
nodes connected in horizontal rows and one ver-
tical column through the source node in the center

(Fig. 2f(a)).

(#4) We then randomly connect a fraction R of the re-
maining disconnected pairs of nodes (Fig. Pf(b,c)).

We quantify the path redundancy in terms of R, where
R = 0 corresponds to a tree and R = 1 corresponds to
a two-dimensional lattice. Figure |2| schematically shows
how, by connecting disconnected pairs in the tree struc-
ture in Fig. a), we can increase the path redundancy
through intermediate values in Fig. b) to high values in
the fully connected two-dimensional lattice in Fig. [2[c).

To complement the analysis of synthetic networks, we
also analyze two real spatial networks with effective di-
mensionality between one and two: the road networks
of Texas and California [33]. For all of the described
networks, we quantify the wave frequency as a function
of distance and path redundancy. For comparison, we
compare the results with a null model without interac-
tions between information waves. For the one- and two-
dimensional systems, we also quantify the wave-speed
distribution as a function of distance and path redun-
dancy.
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FIG. 2. Illustration of spatial networks with different
degrees of path redundancy. (a) A tree with path redun-
dancy R = 0. (b) A network with path redundancy R = 0.33.
(¢) A two-dimensional lattice with path redundancy R =1

III. RESULTS AND DISCUSSION

Before we show the results for the speed and wave fre-
quency as a function of distance and path redundancy,
we begin by analyzing the dynamics from the information
waves’ perspective.

A. Spatial spreading profile

Unlike non-interacting information waves, many inter-
acting information waves will die out long before they
reach the boundaries of the system. For a general idea of
how far they spread, we analyzed the spatial spreading
profile by measuring the probability distribution of the
information waves’ total extension, maximum extension,
and maximum penetration distance. The total extension
of an information wave over its entire lifetime is the frac-
tion of nodes in the network that, at some point, adopted
the corresponding information. This measure captures
the aggregated popularity of a piece of information over
its entire lifetime. The maximum extension of an infor-
mation wave at its peak is the maximum fraction of nodes
in the network that simultaneously adopted the corre-
sponding information as their latest information. This
measure reflects the maximum popularity of a piece of in-
formation over its whole lifetime. Finally, the maximum
penetration distance of a wave is the longest geodesic
distance from the source that the wave ever reached.

Figure [3| shows the spatial spreading profiles of inter-
acting waves on three networks with different levels of
path redundancy. We used a path redundancy of 0.4 as
an intermediate value, because, as we show in the next
section, a path redundancy of R = 0.4 corresponds to the
average path redundancy of the road networks of Texas
and California. As Fig. [3] shows, the dynamic behavior
of this intermediate path redundancy is similar to the
maximum path redundancy of the two-dimensional lat-
tice. For all topologies, the competition between waves
is most intense close to the source, such that most waves
die out small before they have covered much ground (Fig.
a)). Except for boundary effects, which are significant

in some cases, a power law distribution with exponent
1 approximately captures the scaling for all topologies.
While the scaling is similar for different degrees of path
redundancy, higher path redundancy increases the overall
probability of spreading across the system. That is, in a
topology with higher path redundancy and more possibil-
ities for a wave to escape from chasing waves, more waves
can reach the system boundary. As a result, the fraction
of waves that die before reaching the boundary is smaller
in a system with higher path redundancy, as seen by the
vertically shifted probability densities between high and
low path redundancy in Figs. B|(b) and (c). With no path
redundancy in a tree-like topology, there is only one di-
rection to expand into and chasing waves follow imme-
diately after. Therefore, very few waves occupy many
nodes at the same time in a low-dimensional system (Fig.
b)) In contrast, with higher path redundancy, a fast
wave can expand more quickly in multiple directions and
reach higher maximum extension size.

Interactions between information waves prevent slow
waves from reaching distant parts of the network. For the
individuals that propel the spread of the information, this
competition affects (i) the age of the information that
actually reaches them, and (i¢) the frequency at which
new information arrives. In the next section we take the
perspective of the waves and, in turn, investigate these
two effects in detail.

B. Information wave speed and frequency

To investigate the extent of novelty for information ar-
riving at a node, we calculated the age distribution of
waves that reach a certain area. That is, we measured
the average age of hitting waves for nodes at a given
geodesic distance d to the source. For comparison, we did
the same experiment for multiple non-interacting waves.
We ran our experiment on a network with 3600 nodes
(ordered in a 60 by 60 square) and quantified the prob-
ability distribution of information age for two groups of
nodes: those that are close to the source (d = 10) and
those that are far from the source (d = 28). In Fig.
we compare the probability distribution of the informa-
tion age between interacting and non-interacting waves
on two networks: a tree with the lowest possible path
redundancy, R = 0, and a two-dimensional lattice with
the highest possible path redundancy, R = 1. In both
networks, information packages that reach a node have
traveled for a shorter time in systems with interacting
waves, because the interaction between waves forms a
selection process in which only fast waves survive.

Information that reaches a node is newer with than
without interaction between waves, because slow waves
die out as they move away from the source. That is,
nodes far from the source will only be reached by a frac-
tion of all pieces of information that spread from the
source. We quantified this effect with the wave frequency,
the rate at which new information waves arrive at a node.
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FIG. 3. Spatial spreading profile of competing information waves on different networks. The networks have 1.2-10°
nodes and each point corresponds to an average over more than 5 independent runs. Each run simulates competition between
15,000 different information waves. For the total extension size in (a), we normalize by the number of waves that die out within
the system, and for the maximum extension size in (b) and the maximum penetration distance in (c), we normalize by the

number of released waves.
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FIG. 4. Probability density of information age. (a) On
a tree with 3600 nodes and R = 0. (b) On a two-dimensional
lattice with 3600 nodes and R = 1. We quantified the age
distribution of arriving waves for nodes that are close to the
source (d = 10) and for nodes that are farther away from the
source (d = 28). Results are obtained by averaging over more
than 10,000 different competing waves.

In Fig. 5} we show how the wave frequency scales as a
function of the distance from the source. We quantified
the wave frequency as a function of geodesic distance
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FIG. 5. Wave frequency as a function of distance
for interacting and non-interacting information waves
on different networks. The results on the tree and two-
dimensional lattice are fitted to a power-law with exponent
0.5 and 0.3, respectively. For the California and Texas road
networks, the results are very close to each other and similar
to the network with path redundancy R = 0.4. All synthetic
networks have more than 10® nodes. The results on these net-
works are achieved by simulating more than 5000 competing
waves. The results on the road networks are averaged over
more than 25 runs and each run includes more than 30,000
competing waves.

on multiple networks: a tree (R = 0) with 1,210,000
nodes (1100 by 1100 square), a two-dimensional lattice
(R = 1.0) with the same number of nodes, and two syn-
thetic networks with the same number of nodes and path
redundancies between the tree and the lattice: one with
R = 0.4 and one with R = 0.6.

For non-interacting waves, the wave frequency is the
same for any node at any location and equal to the tran-
sition probability 8 (gray line). For interacting waves,
the wave frequency decays as a power law of the form
f(d) ~ d~7 with an exponent ~ that depends on the path
redundancy. In general, for nodes at similar geodesic dis-



tance, a topology with higher path redundancy results
in higher wave frequency. For example, the wave fre-
quency decays similarly fast for the two road networks
and close to the synthetic network with path redundancy
R = 0.4. Moreover, the exponent +y is around 0.2 for the
two-dimensional lattice and around 0.5 for the tree struc-
ture with no path redundancy.

Historically, the spread of technology and innovation
has taken place on spatial networks, such as road and
river networks. Trade routes, such as the Silk Road con-
necting the Fast and the West, worked as the backbone
of the spread of information for centuries. To capture
the dynamics on such networks, and on similar networks
with intermediate path redundancies, we analyzed the
California and Texas road networks. We found that the
dynamics on the spatial networks are similar to the syn-
thetic networks with path redundancy R = 0.4; the ac-
cess to new information as a function of distance from the
source has a power-law scaling (Fig.[5)). To better under-
stand the origin of this universal power-law behavior, in
the next section we derive an analytical calculation for
the wave frequency in a one-dimensional system.

C. Analytical derivation of the wave frequency

In this section, we provide an analytical derivation of
the wave-frequency scaling in a one-dimensional system.
We derive the wave frequency as a function of distance
from the source by working with two quantities: the wave
size s and the position r of the outer boundary of the
wave, or “position” for short. In one dimension, these
two magnitudes are really governed by what happens in
the two boundaries in a single time step. Specifically, the
following outcomes are possible:

e The two boundaries move simultaneously to the
right; this happens with probability 42. In that
case, s remains the same and r increases. This cor-
responds to the thin horizontal arrows in Fig. [6]

e The inner boundary remains in the same position,
and the outer one moves. This implies that both
r and s increase by one, which we represent with
thin diagonal arrows in Fig. [6] This happens with
probability 8(1 — B).

e The inner boundary moves, and the outer remains
in the same position. The size decreases by one
and r keeps the previous value. This again happens
with probability 8(1 — ), and we represent it with
thin downward arrows in Fig. [6]

e Both boundaries remain in the same position, in
which case neither the wave’s position nor its size
change. This happens with probability (1 — 3)2.

These probabilities sum up to one, but since we are
just interested in size and position, and the fourth
outcome changes none of these, we remove the fourth

outcome and normalize the other probabilities accord-
ingly. Thus the probability for the first outcome be-
comes 3%/ (1—(1-p8)?) = B/(2 — B), which we de-
note by b. The second and third case become S(1 —
B)/ (1—(1—-p)%) =pB(B—1)/(B—2). The second and
third case have the same probability, but we denote them
with different letters, a and c respectively, for the sake of
clarity. Each of the three kinds of transitions is depicted
in figure [f] with arrows of different colors.

In the model, the origin is special because a new wave
starts there at each time step; no other points share that
property. To make the analysis simpler, we will consider
an alternative origin one step outwards, where the start-
ing waves have size 1 with probability 1. The state cor-
responding to this new origin is represented with a green
dot in the figure. Effectively, any information we obtain
using this new origin is conditioned on the wave actually
reaching this first point. We use this fact later to restore
the original condition of a new wave at the origin of each
time step.

Using the transition probabilities a, b, and ¢, and
guided by Fig. [6] we can derive a recursive equation for
the probability of having a size-one wave at a given po-
sition 7. We use the fact that, in the state space rep-
resented in the diagram, the marginal probability of all
the walks starting and ending with the same value for
s, never going below s and advancing x steps, does not
depend on s itself, but only in the number of steps z
advanced. In other words, the thick curved arrows in
the figure correspond to events with the same probabil-
ity, even if they use different values for s. We call this
probability ¢g(z). Note that then g(r) is the probability
of finding the wave at position r with size 1.
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FIG. 6. State transition diagram of position and size
The position and size of the waves can change by following this
diagram’s arrows. The horizontal axis represents the position
r of the right boundary, and the vertical axis represents the
size s of the wave.

We can get an expression for g(r) as follows. If a walk
ends at (7, 1), it can reach this last state in only two ways:



from the left, with a green arrow, or from the state above
(r,2), with a gray arrow. If the state is reached from the
left, it means that the wave had to go from (1,1) to
(r —1,1), and thus we need the value of g(r — 1). The
case for the wave coming from above is more convoluted
and we handle it in the following way. First, because the
state above had to go to 2, we can safely assume that
there was at least one transition where s changed from 1
to 2. We fix the position of the last of such a transition
as r1, such that (rq,1) and (r; + 1,2) is a segment of
the walk. We can see that the walk from (1, 1) to (rq,1)
will have probability g(r1). The segment from (r1,1) to
(r1 + 1,2) will have probability a. That leaves us with
the part of the walk from (r; + 1,2) to (r,2). Because
the last transition from s = 1 to s = 2 was the one at rq,
there is no way that the walk could go to s < 2 in the
section from (r1+1,2) to (r,2). In other words, this part
has probability g(r —ry — 1). With this information, we
can write the recurrence for g(r) as

r—1

g(r) =Y lg(r)aglr—r—1)d +bg(r—1). (1)

T1 =0

To solve the above equation, we use a generator function
of the form

G(2) = g(i) @

Since Eq. |1} is only valid for r > 2, we first write

+Zg (3)

then apply the recursivity to obtain

+Zbgz—1

G(2)=g¢(0) + zg(1

G(z) = 9(0)

0 —1+41
E 2 g ac
i=2

i1=0

+2z9(1
(4)
g(i — iy — 1) g(i1)-

With some variable substitutions and algebraic manipu-
lation, we can write it as

G(z)=¢(0)—=bzg(0)+29(1)+bzG(2)+

aczZzJ Zg Jj—1i1)

: 110

(i) - zacg(0)g(0).

The terms in the sum of the previous expression repre-
sent a neat convolution, which can be expressed as the
product of generating functions. From there we get the
quadratic expression for G(z),

G(2) = 1=bz—acz+(b+ac) z4+bz G(2)+acz G(2)?. (6)

From the two solutions, we select

—14bz4++V1—-2bz—4dacz+ 1222
2acz ’

G(z) = —

(7)

As mentioned in the text, with probability cg(r), the
wave is going to die without ever reaching the position
r + 1. Thus, by summing cg(x) from x =1 to x =r — 1,
we can calculate the fraction of waves alive at a specific
position r of any size as

r—1
r)zl—cZg(m). (8)
x=0

To calculate the survival probability h(r), we write down
the corresponding generating function as

:ZziszcZg (9)

7‘00

The first term in the difference is —— and the second

11—z
term is again a convolution:

H(z)= +czzg (10)

such that we get

czG(z)—1

H(z) = z—1

(11)

After substituting Eq. 3| and doing some simplifications,
we obtain

2

H(z) = .
-B(z-1)

(12)
The function H(z) has only one principal singularity at
z — 1, and we know that the coefficients h(r) are strictly
positive. Therefore, we can apply Corollary 2 in ref. [34]
and derive the asymptotic scaling for h(r). By that corol-
lary, we get that, when r — oo,

V(=4+BA+B(-1+2))) (-1 +2)

1 e (13)
VI=8yr

We should remember that h(r) represents the survival
probability of the wave once it takes off at the first posi-
tion inmediatly after the origin, and that happens with
probability 8, so the frequency at which new waves are
observed at a given point r is

h(r) ~

)~ 7/8 r1/2
f(r) NN (14)

This expression is valid as long as 8 < 1, provided that
r is sufficiently large. Figure [7] shows the values of the
frequency obtained by simulation and those obtained by
the previous equation.
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Dots: the frequency obtained averaging the observation of 2e6
time-steps. Green line: the theoretical prediction according
to equation [T4]

IV. CONCLUSION

We used a simple agent-based model to capture the
observation that waves of new information or technol-
ogy often interact with one another as they propagate
through a system. In the model, we use novelty as a
proxy for quality and key trait in the interaction between
waves. We showed that information that reaches agents

is newer with than without interactions between waves at
the cost of lower arrival frequency of information waves.
Moreover, high path redundancy has a positive effect on
the wave frequency, such that information more easily
spreads in a system with multiple routes to targets. In
general, the wave frequency decays as a power law of
the distance from the source, and analytically we showed
that the scaling goes as one over the square root of the
distance in a one-dimensional system. Our analysis on
road networks of California and Texas showed that these
networks provide an infrastructure for information prop-
agation that corresponds to lattice models between one
and two dimensions. We conclude that interacting in-
formation waves show interesting dynamics that call for
further study.
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